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Part I : CODE DESIGN

Abstract

The first part of this paper presents a simple and systematic technique for constructing multi-

dimensional MPSK TCM codes. The construction is based on a multilevel concatenation

approach, in which binary convolutional codes with good free branch distances are used as

the outer codes and block MPSK modulation codes arc used as the inner codes ( or the

signal spaces ). Conditions on phase invariance of these codes are derived and a multi-

stage decoding scheme for these codes is proposed. The proposed technique can be used to

construct good codes for both the AWGN and fading channels as is shown in the second part

of this paper.

1. Introduction

¢

Since the publication of the celebrated paper by Ungerboeck in 1982 [1] on trellis coded

modulation(TCM), there has been a boom of research in this area. Over the last fourteen

years, researchers have proposed various techniques of constructing modulation codes using

both convolutional codes (Trellis Coded Modulation (TCM))[1-7] and block codes ( Block

Coded Modulation (BCM))[8-14]. Almost all existing techniques for constructing TCM

codes rely heavily on computer searches to find good TCM codes. These techniques work

very well for small code complexities and rates. However, for large code complexities and

high rates, the search becomes extremely time consuming (if not impossible) and a more



systematic technique of construction is required. Most of the problems associated with alge-

braic construction of TCM codes arise due to the lack of indepth knowledge of convolutional

codes. In addition, the nonlinearity of the mapping function ( true for most signal constel-

lations ) which maps the coded output bits of the convolutional encoder onto the signal set,

complicates the problem further. BCM codes on the other hand, have the advantage of be-
m.

ing extremely rich in algebraic structure and phase symmetry, as has been shown in [10-13].

BCM codes however, have the disadvantage of being slightly poor in performance for low

SNR ( signal-to-noise ratio ), as compared to TCM codes of the same decoding complexity,

due to the large number of nearest neighbors.

Pietrobon et. al. extended Ungerboeck's results to multi-dimensional MPSK signal con-

stellations [3]. They proposed a set partitioning technique for multi-dimensional MPSK

signal constellations similar to Ungerboeck's set partitioning technique and then used com-

puter search to design multi-dimensional MPSK TCM codes. However, due to the limitations

of computer search, as were outlined above, they restricted themselves to 4 × 2-dimensions.

In addition, to reduce the search complexity, they placed some other restrictions on the

computer search. Multi-dimensional MPSK TCM codes have various advantages over 2-

dimensional Ungerboeck TCM codes, the main ones being: (1) higher spectral efficiencies

can be achieved; (2) codes constructed over multi-dimensional MPSK signal constellations

have better phase invariance properties than that of 2-dimensiona.l Ungerboe,ck MPSK codes;

and (3) lower average decoding complexities to achieve the same performance.

A common point to be noted among all the construction techniques available in literature

( whether TCM or BCM ) is that the modulation codes constructed by these techniques re-

quire large decoding complexity to achieve large coding gains. The large decoding complexity

of these codes makes them impractical for applications where high reliability and high data

rates are required. As such, what is required is a multl-stage decoding technique which

reduces the decoding complexity, while maintaining good performance.

This paper presents a simple and systematic technique for designing multi-dimensional
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MPSK TCM codes with minimal computer search. The technique will be used to construct

good codes for both the AWGN and fading channels. Though the main emphasis has been to

construct codes for the MPSK signal constellation, the results are applicable to other signal

constellations as well and modifying the existing construction for other signal constellations

is straight forward. This paper is organized as follows: section 2 of the paper presents a new

concept, branch distance of convolutional codes, which will be used extensively in the later

sections. Section 3 outlines the basic construction technique of the proposed codes, and in

addition shows that the codes constructed in [3] turn out to be a special case of the proposed

construction. Section 4 discusses phase invariance. In section 5, a multi-stage decoding

algorithm for the proposed codes is presented and it's decoding complexity is discussed.

Section 6 concludes by discussing the design rules for constructing good codes using the

proposed technique.

2. Branch Distance of Convolutional Codes

For two code sequences u and v in a binary linear convolutional code, the branch

distance between them, denoted d_(u, v), is defined as the number of branches in which u

and v differ ( or equivalently, this is simply equal to the number of non-zero branches in u_v,

where _ denotes binary addition ). For a code sequence u in a binary linear convolutional

code, the branch weight of u denoted wb(u) is simply the number of non-zero branches

in u ( or equivalently wb(u) is the branch distance between u and 0, where 0 refers to

the all-zero code sequence, i.e., wb(u) - db(u, 0)). The minimum free branch distance of a

convolutional code C, denoted dB_free , is the minimum branch distance between any two

code sequences, i.e.,

ZXmin{db(u v) : u, vECand'u#v}dB_free = (2.1)

Theorem 1: For a rate k/n feedforward binary hnear convolutional code of total encoder

memory 7, its minimum free branch distance, dB_free , is upper bounded by 1 + [7/kJ.

Proof: Let the k inputs to the encoder be denoted as It,12, ... Ik and let the encoder
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memoriesassociated with input li be 7_ for 1 < i < k. Let min{wb(u)) denote the minimum

branch weight among all the code sequences associated with the binary linear convolutional

code. Let min____ _ = _,j. Consider that the binary sequence (1,0, 0,... ) is fed into the input

Ij and the all zero sequence (0, 0, 0,.- .) is fed into the remaining inputs. The branch weight

of the resulting code sequence is upper bounded by 1 + _j. Hence, min{wb(u_} _< 1 + 7j.

Since the code is linear, this also corresponds to an upper bound on the minimum free branch

k

branch distance, i.e., dB-free _< {1 + mi_Ti). Given any 7 and k, the idea is to maximize
k

riB_free.Hence, m (dB_free ) _<max{1,,k+ m i.e., the best riB.free for a given 7 and k
k k

is < {1 + max{minT_)}. It is readily seen that the value of max{minT_} is [7/kJ. AA
-- "y,k i=1 _,k i=1

Theorem 2: If dB_free = 1 + [7/kJ, then NB.free , the number of codewords with branch

weight dB_free , is lower bounded by (2 v - 1) where p is the number of inputs of the convo-

lutional encoder which have an encoder memory of [7/kJ associated with it.

Proof: Let el denote the binary sequence (1, 0, 0,.-.) i.e., 1 followed by the all zero sequence

and let e0 denote the all zero binaxy sequence (0,0,0,--.). Consider any non-zero code

sequence u. Then wb(u) > 1 + {.7/k]. Let the p inputs which have an encoder memory of

LT/k] associated with it be lj for 1 < j < p. Consider that e0 is fed into the inputs I i for

p+l <j < k. Also, consider that the inputs 1i for 1 < j < pcan take only one of the

two sequences e0 or el. Then the convolutional encoder under this constraint has (2 p - 1)

distinct non-zero input sequences. Each of the (2 v - 1) sequences will ha_,e branch weight

< 1 + [7/kJ. Since dB.free = 1 + [7/kJ, each of the (2' - 1) sequences thus has branch

weight 1 + LT/kJ. Hence, NB_free > (2'- 1). AA

A binary linear feed-forward convolutional code is said to be optimal in terms of branch

distance if it achieves the upper bound as stated in theorem 1 for a given 7 and k. Also, a

code is said to be optimal in terms of the free Hamming distance, di.i.free , if it achieves the

maximum dH_free possible for a given 7, k and n as specified in [15]. Note, from theorem

1, for a given dB_free , higher encoder memory is required to achieve the same dB_free as

k increases, i.e., given a certain fixed dB.free , there is a tradeoff between complexity and
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rate. In addition, as is shown in theorem 2, NB.free also increases as the rate increases and

hence there is also a tradeoff between rate and performance. A search has been performed

on rate-1/2, -2/3 and -3/4 codes to find the best ones in terms of dB_free and NB_free. The

results are given in Tables 1 , 2 and 3.

An important point to note is that codes optimum in terms of branch distance may

not be optimum in terms of the free Hamming distance rill.free and vice-versa. For small

values of 7, it has been observed that codes optimum in terms of branch distance are also

optimum in terms of dH.free, however, the same does not hold for higher values of 7. From

Table 1 we notice that up to 7 = 7, the search yields codes which meet the upper bound

in terms of dB_free , however from that point on, the best codes start falling short of the

upper bound by 1. Codes shown in Tables 2 and 3 meet the upper bound, however as the

complexity increases, NB_free also starts increasing. Also listed in the tables is the dH.free

and Nit_free, the number of codewords with dH.free. The code generators in the tables have

been listed in octal with the lowest degree on the left and the highest on the right, e.g.,

(622)s = 1 + D + D 4 + D z. As an example, consider the 8th code listed in Table 1. This is a

rate-l/2 convolutional code with generators I+D+D4+D 7 and I+D2+DZ+D4+DS+DS+DS

and dB_free = 8.

3. Construction of Multi-dimensional MPSK Codes

The proposed multi-dimensional MPSK codes are constructed using a q' level concatena-

tion approach as shown in Figure 1. Outer codes in the multi-level concatenation may be

either block or convolutional, binary or non-binary. However, in this paper we will focus on

binary convolutional codes as the outer codes.

Outer Codes:

The outer code, Gi, at the i-th level for 1 < i < q is chosen to be a convolutional code

of rate ki/ni with optimum branch distance for the given rate and state-complexity. The

parameters ki and nl depend upon the choice of the inner codes, as will be clear after the



discussion of inner codes. Each outer code is selected from the tables mentioned in section

2. The reasons for selecting an optimum branch distance convolutional code will be clear

when discussing theorems 4, 5 and 6.

Inner Codes:

Let S denote the two-dimensional MPSK signal constellation which consists-of 2t signal

points. Let S '_ denote the set of all m-tuples over S, where m is a positive integer. Since

S is a two-dimensional signal space, S" is an m x 2-dimensional signal space in which each

signal point is a sequence of m MPSK signals. To construct the proposed codes, the signal

space is chosen as a subspace of S", denoted A0. In this paper, A0 is constructed using the

multilevel coding method proposed by Imai & Hirakawa [8].

Using the set partitioning approach proposed by Ungerboeck in [1], each signal point

in the set S is labeled by a string of symbols from GF(2). Since S contains 2t signal

points, we shall consider a labeling whose set of label strings is of the following form: L

{ala2 ... at : ai E GF(2) for 1 < i < _}. Let ,_ denote the one-to-one mapping from L

to S. If ala2 "" at is the label for a signal point s, then s = A(ala2 ... at). Define an

!

addition "+" on the label set L as follows: For two labels, ala2 ... at and a'la'2 ... at, in

I I l II II II II f

L, ata2 "" at + ala 2 "'" a t = ala 2 ... a t where a i = ai @ a i for 1 < i < t and _ is

the modulo-2 addition. With this addition, L is simply the vector space of all Ltuples over

GF(2). We call L the label space for S.

For 1 < i < t, let Co,i be a binary (m, ko.i, 6o.i) linear block code of length ra, dimension

ko,i and minimum Hamming distance _,i. Let

Vl = (vi,l, vi, , "" vi,,,,) (3.1)

be a code word in C0,i for 1 < i < t. We form the following sequence :

Vl * Vz * ..- * Vt _ (vl,lv2,1"" vt.l , vl.2v2a'" vt._ , ..., Vl,r,,V2.,,,''" Yr.,,,) (3.2)

For 1 < j < m, we regard vt,jv2d"" vid as the label for a signal point sj in the MPSK signal



set S. Then Vl * V2 ""

A(V1 *V2 ". *Vt) =

= (s,,,_, ..., s_)

is an m-tuple over the MPSK signal set S ( a sequence of m

signal point in the m x 2-dimensional signal space S".

form the following set of m-tuples over the label set L :

* Vt is simply an m-tuple over the label set L and

(_(_,,,_2,,... _,,), _(_,,2_,_''' _t,_),.-., _(_,,_2,_... _,m))

(3.3)

MPSK signals ) which is a

From codes C0,i for 1 < i < t, we

Co,,*Co.2* "" *Co,t-{Vx*V2* ... * Vt : Vx E Co,,, V2 E Co.2, .'. Vt E Co,t} (3.4)

We will denote Co,, * Co,2 * "" * Co,t by f't0. Then, _o is a vector space ( or a linear code

) over L ( a subspace of the vector space of all the m tuples over L, denoted L '_ ). flo has

2k°, '+k°,_+ "" +_,_ vectors. Hence, the dimension of f_o is go = ko,1 + ko,2 + ... +/cox. Recall,

that for 1 < i < q, ni denotes the number of output coded bits of the convolutional encoder

at the i-th stage of encoding. Choose

n, + n2 + "" + nq = ko,, + ko,2 + "" + ko,t = ao (3.,5)

Suppose each m-tuple in £to is mapped into an m-tuple over the MPSK signal set S by the

mapping A(-). Then, we obtain the following subset of signal points in S=:

Ao_=_(ao) = {_(V_• V2 ... • V_): V_ _ Co,_,V2 _ Co,_,... Vt e Co_}

The set A0 is a subspace of S '_ with dimension no. This subspace Ao is actually a basic

_-level block MPSK modulation code of length m[8-14].

The performance of A0 over the AWGN channel depends upon the minimum squared

Euclidean distance and the number of nearest neighbors. The minimum squared Euclidean

distance of ho can be calculated using results of [12]. On the other hand, the performance

of Ao over fading channels depends upon the minimum symbol distance, product distance,

number of nearest neighbors and the squared Euclidean distance to a lesser extent [17]. The

minimum symbol distance of Ao is given by [17] _n = min_=1 _o,i. Suppose, Ao has minimum

squared Euclidean distance A] and minimum symbol distance _n-
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In the following, the subspace Ao of S" will be used as the signal space for constructing

multi-dimensional trellis MPSK codes. Before presenting the code construction, we need to

define a subspa_:e of flo for partitioning No. For 1 _< j < g, let CIj, C'2j, ..., C'qj be a

sequence of linear subcodes of Coj such that

Let kid be the dimension and 6ij be the minimum Hamming distance of Cid for 1 < i < q.

Then C_j is an (m, kid, 6;a) code. For 1 < i < q, we form the following linear code

over the labeling space L: f_ = G_,l * Gia * ". * C,,t. The dimension of this code is

ai = ki,l + ki,_ + ... + ki,e. It is clear that for 1 < i < q,

c_ fli-1 (3.7)

It follows from (3.7) that ill, f12, "", f_q form a sequence of subspaces of flo and

Forl<i<q, let

hi _ A(fl,) (3.9)

Then, Ai is a subspace of S '_ with dimension dim(A/) = ai. Let the minimum squared

Euclidean distance of Ai be A_ and minimum symbol distance be 6_. Equations (3.8) and

(3.9) imply that Ax, A2, -.-, Aq form a sequence of subspaces of A0 and

A_ C_hq-1 C ... _C A1 C_A0 (3.10)

Suppose the binary codes, Cij with 1 < i < q and 1 < j < g, are chosen such that

It follows from (3.5) and (3.11) that

_r 1

cr I

ni-'ai-l--ai (3.11)

= n2 + na +... + nq

= na +... +nq

--- /lh/

=0



fio and its subcodesfil,ri2,"',riq are used to form a sequence of coset codes [7]. Let

UI*U2* ... * Ut be a vector in rio but not in fit. ThenU1,U2 ... *Ut + 121 is

a coset of ril in flo and U1 * U2 * "" * Ut is called the eoset representative. Recall

nl = _=l(ko,_ - ka._). Hence, there are 2 TM cosets of fil in rio. These 2 "1 cosets of fil form

a partition of rio. Let f/o/fit denote the set of cosets in 12o modulo fit. rio/fit is called a

coset code. Let [flo/fil] denote the set of coset representatives of the coset code rio/fit.

Hence rio/ft = [rio/fit] +fit. rit can be further partitioned using f12, in the same way as is

outlined above. Partitioning each coset of f/t in 12o on the basis of 122, we form the coset code

12o/fl/f2. Let [fib/fill denote the set of coset representatives in the partition f_/fi2. Hence

each coset in the coset code f0/fi_/fi_ can be written in the form [120/fill + [fit/f2] + f_.

Proceeding in this manner, we form the following sequence of coset codes:

BI = flo/fil
B2 = flo/fi:/122

Bq = nolfi, lf21... If,

For 1 < i< q, each coset in B_-t = f/0/fit/""/12i-1 consists of 2"_ cosets modulo fi_. These

coset codes are used as the inner codes in the multi-level concatenation in which Bt is used

at the first level and Bq at the q-th level.

t

Let Wo and w0 be two distinct points in rio. If these two points are in two distinct cosets

of B_ then the squared Euclidean distance between s = A(_) and _' = A(_,_) is at least Ao2.

If the two points w0 and w'0 are in the same coset of Bx but distinct cosets of B2, then the

squared Euclidean distance between 8 and 8' is at least A_. Generalizing in this manner, it

is easy to see that if the two points Wo and Jo have identical coset representatives in Bi for

1 < j < i, but distinct coset representatives for Bi then s and s' have a squared Euclidean

distance of at least 2Ai-t. Hence, B1 is the least powerful and Bq is the most powerful coset

code in terms of Euclidean distance.

The same arguments as above will also hold if the minimum squared Euclidean distance

at each stage is replaced by the corresponding minimum symbol distance.
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Encoding of the rn x 2-dimensional TCM code:

Encoding is accomplished in q stages, as shown in Figure 1, and for 1 _< i _< q, the i-th

level encoding is accomplished in two steps: (1) at any time instant t, a message of ki bits

is encoded based on the convolutional outer code Ui into an n_-bit coded block; and (2) the

n_-bit code block then selects a coset from the coset code Bi = rio/f/l/'.-/fti. _

The output at the i-th level encoder is a sequence of cosets from Bi. All the possible

coset sequences at the i-th level form a trellis, and each branch in the trellis corresponds to

a coset in Bi, and this trellis is isomorphic to the trellis of Ci. bet vi denote a code sequence

in the convolutional code Ui and let _i denote the mapping from the ni coded output bits

of the convolutional code to the 2 _' cosets. Hence, _;(v|) denotes the sequence of coset

representatives at the i-th stage of encoding, corresponding to the code sequence v|. Hence,

any code sequence in the rn x 2-dimensional TCM code can be written in the form

A(_l(vl) + _b2(vz) + ... + Cq(Vq)). (3.12)

At every time instant t, the encoder puts out rn MPSK signals.

A very interesting and special case of the proposed codes occurs when q = 2 and the

second level outer code is left uncoded, as shown in Figure 2. This structure is equivalent

to the structure used for the construction of the multi-dimensional codes in [3]. A computer

search was used in [3] to find the convolutional code to be used at the.first level. The

computer search selected a convolutional code which optimized the multi-dimensional code

both in terms of EucLidean distance and number of nearest neighbors.

A multi-dimensional code is sfid to be linear with respect to binary addition, if for any

two code sequences in the multi-dimensional code, U = A(_(ul) + #h(u2) + --. + _q(Uq))

and V = A(_'l(Vl) + _b2(v2) + "'" + _bq(Vq)),

u,e v +¢2(u2)+ ... +¢,(Uq))+ (¢,(vl)+¢2(v2)+ ... +¢,(Vq)))

is also a code sequence, where Ul and v| for 1 _< i _< q denote output code sequences of

the convolutional code encoder Ci at the i-th level. Linearity of the code ( in terms of
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binary addition ) simplifies the error analysis and in addition leads to a simpler encoder and

decoder. The linear structure leads to the following theorems on the linearity, minimum

squared Euclidean distance and minimum symbol distance of the proposed codes.

Theorem 3 : A multi-dimensional code is linear with respect to binary addition, if all the

mappings _, for 1 < i < q are linear. _

Proof : Recall, that any code sequence in a multi-dimensional TCM code can be written

in the form A(_l(Vl) + _2(v2) + ".. + _(Vq)) where vi for 1 < i < q denotes the output

code sequence of the convolutional code 6'; at the i-th level. The proof then follows trivially

from the definition of linearity.

Theorem 4 : The minimum free squared Euclidean distance of a coset trellis code at the

_ _ 2 > 2j-th level, for 1 < j < q is lower bounded by D0.). free_ Aj_,.d(l_!free, where d_!free denotes

the minimum free branch distance of the convolutional code at the j-th level, Cj.

Proof : Consider two distinct code sequences, U = $(_51(uz) + _2(u2) + ... + dq(Uq))

and V = $(dl(Vl)+_(v2)+ --. +_q(Vq)),where ui and vi for 1 < i< qdenotes two

output code sequences of the convolutional code Ci at the i-th level. Assume that ui = vl for

1 < i < j and uj # vj. At a particular time instant t, let $(w) and A(co') be the corresponding

transmitted signal points for U and V respectively, where co and w' E f_o. Since ui = vi

for 1 < i < j and uj # vj, hence co and ¢0' have identical coset representatives in Bi for

1 < i < j and hence the minimum squared Euchdean distance between $(w') and ).(w') is at

2
least A j_ 1. Since Cj has minimum free branch distance _J) hence the two sequences ujB-free'

and vj are distinct in at least d(l_[fre e branches. Therefore, the squared Euclidean distance

between U and V is at least A 2i-1 • d(l_).free- _A

Theorem 5 : The minimum free squared Euclidean distance of the overall TCM code is

• A 2 .0lower bounded by D_ree > m,nl<js,{ .i-1" d(l__free}.

Proof : Consider two distinct code sequences U and V. Using the same notation as

developed in theorem 4, consider that Ul = Vl for 1 < i < j and that uj # vj. Then, theorem
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4 gives us the minimum squared Euclidean distance between the two sequences. Since j is

arbitrary, the minimum squared Euclidean distance between the two sequences is obtained

by taking the minimum over all the q levels, i.e., if D2(U, V) denotes the squared Euclidean

distance between the two sequences U and V, then D2(U, V) _> minl<./<,{A___, d_B__free}.

Since U and V are any two sequences, the theorem follows. AA

Theorem 6 : The minimum symbol distance of the overall TCM code is lower bounded by

- B.free j.

Proof : The proof is similar to that in theorem 5, with the only difference that instead of

minimum squared Euclidean distance we now consider minimum symbol distance. AA

4.A Spectral Efficiency

At each encoding time instant, kl + ks + ". + kq bits are fed into the encoder (Figure

1), and the corresponding output is m MPSK signals. Hence the spectral efficiency of the

m x 2-dimensional TCM code is (kl + k2 + ... + kq)/m bits/symbol.

4.B Phase Invarianee

Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring

rapid carrier-phase resynchronization after temporary loss of synchronization [2]. It is desir-

able for a modulation code to have as many phase symmetries as possible. Recall, that the

proposed multi-dimensional modulation codes axe constructed using q convolutional codes

and q + 1 basic t-level block modulation codes (Figure 1). The phase invariance of the
I

proposed codes is a function of both the inner codes and the outer codes. If convolutional

codes are used at all the q levels, the phase invariance of the constructed modulation

codes would depend upon the structure of the convolutional codes used, and for most cases

the constructed modulation codes would have no phase invariance. A special case of the

proposed codes occurs when the outer code at the q-th level is left uncoded ( figure 2 shows

this special case for q = 2 ). Most of the codes constructed using this special case do have

phase invariance. Kasarni et. al. in [16] derived conditions on phase invariance of basic
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t-level block modulation codes. A slightly modified form of the conditions proposed in [16]

will be applicable to the proposed codes.

The following theorem gives the conditions for the proposed modulation codes to be

phase invariant under rotation for this special case.

Theorem 7: Let A0 = A(Coa*Co,2* "" *C0,t)and letAv__ = A(Cq-_a*Cq_1,_*_- •*Cq_1_),

where Co,iand Cq-l,ifor 1 < i< g are binary linearblock codes of length m. For I < h < f,

the multi-dimensional MPSK TCM code isphase invariantunder 1800/2t-h phase shiftsif

the multi-dimensional TCM code islinearwith respectto binary addition and:

1 E Cq-l,h and (4.1)

Co.h" C0,h+t "-Cod-1 C C,-I..i for h < j < g (4.2)

where 1 denotes the all-one binary sequence of length m, and for two-binary m-tuples a =

(a_,a_, .-- a,_) and b = (bl,b_, ... b_), a. b =a (al" b_,as, b2, --. ,am. b,_), where ai. bi,

for 1 < i < m denotes the logical product of ai and bi.

Proof: Appendix A

If the outer code at the q-th level is left uncoded, sequences of signal points from Aq-I

are valid code sequences. The best phase invariance that can be achieved for the overall

multi-dimensional code in this case is equal to the phase invariance of Aq-1. The conditions

as stated in theorem 7 provide a set of conditions which guarantee a certain'phase invariance

for the overall multi-dimensional MPSK TCM code independent of the convolutional codes

chosen. Most codes designed using the proposed technique, do ax:hieve the best possible

phase invaxiance (i.e., of hq-t ).

5. Multi-stage Decoding Algorithm

One obvious way of decoding a TCM code proposed in section 3, is to form a super

trellis for the code, which is obtained by taking the direct product of the trellises of the

convolutional codes at the q levels. The complexity associated with this technique ( for most

cases ) would be tremendous. We will focus on a multi-stage decoding scheme, in which the
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deooding is carried out in q stages, corresponding to the q levels of the multi-dimensional

TCM code. Let V = (sl,s_,8_,...) be the transmitted code sequence, where si for 1 _<

i _< oo denotes a signal point in the MPSK signal constellation and let R = (rl, r_, r3,'..)

denote the corresponding received sequence. Using (3.12), V can be written in the form

V = A(_(vl) + ¢2(vz) + "" + ¢,(Vq)) where vi for 1 _< i _< q denotes a codesequence in

the convolutional code C_.

First stage of decoding:

At the first stage, vl is estimated using the received sequence R. Recall, that at the

first stage of encoding, the trellis is isomorphic to the trellis of the convolutional code C1

used at the first level, with each branch of the trellis corresponding to a coset in B_. Each

coset in B1 can be written in the general form _._ + fh, where _o E [ft0/fh]. Let us call this

isomorphic trellis C'1. Hence, each branch of C'1 consists of 2 _1 points, corresponding to the

2 _' points in fh. The trellis C'1 is used to form the trellis A(C'_), where

ACC,) _= {A(v) : v E O1}. (5.1)

The trellis A(C"n) will be used for decoding at the first stage. Any code sequence in A(C_)

can be written in the form

+ (5.2)

where ul is a code sequence in C1 and _al is a sequence of points fron_ f_l, i.e,, _al =

{(wl,l,_.2,wl.3,'' ") :w_j E fh for 1 < i < co}. Standard soft-decision Viterhi decoding 2 is

performed on R using the trellis X(C'1). This yields a code sequence X(q_I(_'I) +&l) in X(C1)

which is closest to the received sequence R in terms of squared Euclidean distance. The code

sequence ¢t forms an estimate of the sequence vl. &_ denotes a sequence of points from fll.

Since {'1 is a code sequence in C1, the estimate of the information sequence associated with

the first level can be obtained from ÷1.

2We will use minimum squared Euclidean distance as the decoding metric for both the AWGN and fading
channels.
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The i-th stage of decoding:

The second and subsequent stages of decoding are very similar to the first stage of

decoding. For 2 _< i _< q, let us consider the i-th stage of decoding. The previous i - 1 stages

of decoding give us estimates of vj, denoted by ft./ for 1 _< j < (i - 1). Using arguments

similar to that given above, we form the isomorphic trellis (_, where any code_sequence in

O; can be expressed in the general form

¢:(ft,) + ¢2(ft_)+ ..- + ¢,-,(ft,-1) + ¢,(ui) + ,_, (5.3)

where ul is a code sequence in the convolutional code at the i-th level, 6", and wi is sequence

of points from fti. Each branch of Ci consists of 2 "_ points, corresponding to the number of

points in fh. The trellis C_ is used to form the trellis X(6';), where

A(C'i) __m{X(v) : v E C,}. (5.4)

The trellis A(6'i) will be used for decoding at the i-th stage. Standard soft-decision Viterbi

decoding is performed on R using the trellis A(C';). This yields a code sequence

_(¢,(ft,) + ¢_(ft_)+ ... + ¢,_:(ft,_,) + ¢,(ft,) + _,) (5.5)

in A(C;) which is closest to the received sequence R in terms of squared Euclidean distance,

where _'i is a code sequence in the convolutional code used at the i-th level, Ci, and d;i is
4

a sequence of points from fli. The code sequence _'i forms an estimate of the sequence v i.

Since fti is a code sequence in Ci, the information sequence associated with the i-th level can

be obtained from fti.

The branch metric ( squared Euclidean distance ) for each branch in X(Ci), 1 < i < q,

is calculated by taking the m received signals corresponding to that branch and finding the

element in the coset corresponding to that branch, which is closest to the rn received signals

in terms of Euclidean distance. This process of finding the closest element in the coset is

termed as closest coset decoding. The Euclidean distance corresponding to the closest

element in the coset becomes the branch metric. If m is small, calculation of the branch
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metric does not represent a formidable task, however if m is large and if fli, 1 < i < q, has

trellis structure then a trellis can be used to calculate the branch metric. In addition, if the

number of states associated with the trellis structure of 12i is big, multi-stage decoding for

12; can be used to further reduce the decoding complexity. Multi-stage decoding of fli would

be carried out in the same way as proposed in [10, 11]. _

Another way of reducing the decoding complexity associated with closest coset decod-

ing would be as follows: Consider a trellis _sup, where any code sequence in the trellis _,_up

can be written in the following form:

¢,('h) + ¢2(_2) + "'" + ¢,-,(_,-,) + ¢,(uj) + _,_up (5.6)

sup osupwhere o_i is a sequence of points from --i , and the rest of the sequences are as before.

_supIf f/i C --i then the trellis C; is a subcode of the trellis _7sup. As such, instead of using

_supCi we can use C'sup at the i-th stage of decoding. __i can be chosen to have a simpler

trellis structure as compared to that of 12;. This would reduce the complexity associated

with closest coset decoding and hence reduce the decoding complexity associated with

the i-th stage of decoding.

Multi-stage decoding leads to error propagation. To reduce the effect of error propagation,

the first couple of decoding stages should be powerful. A special case of the decoding

algorithm occurs for q = 2 and k2 = nz. If closest coset decoding at the first stage is

carried out in a single-stage, then the overall decoding of the multi-dimensional code is also

one-stage. If m is small, then one-stage closest coset decoding is feasible, however if

ra is large, multi-stage closest coset decoding could be adopted to reduce the decoding

complexity. The overall decoding in the latter case would then be multi-stage.

Decoding complexity of the proposed decoding algorithm :

The complexity of the proposed schemes will be measured in terms of the number of

computations required for the decoder to produce an estimate of each 2-dimensional PSK

signal. For 1 < i < q, let 7i be the total encoder memory of the convolutional code used at
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the i-th level in the proposed scheme. Consider the i-th stage of decoding. Then, due to the

Viterbi algorithm alone, the complexity is 2"_'+h' additions and 2_(2 k_ - 1) comparisons, per

m x 2-dimensions ( since each branch has m MPSK signals ). The branch metric calculation

forms an additional complexity and depends upon the choice of the inner codes. Let us call

this complexity Bc,. Hence the total complexity per m x 2-dimensions is : (1) _=1 2"+_,

additions; (2) _;=t 2_( 2k_ 1) comparisons; and- _,i=1 Bc,. Dividing this total complexity

by m would give us the number of computations required per 2-dimensions (i.e., the number

of computations required to decode a single MPSK point ).

6. Design Rules for Good Codes

The performance of codes designed using the proposed technique depends upon vari-

ous factors. If all the design considerations are followed strictly, the codes usually would

achieve good performance and in some cases, with reduced decoding complexity. Some of

the most important design considerations axe: (1) the number of levels q, in the multilevel

concatenation should be kept as low as possible. The advantages of this axe twofold. First,

reducing the number of encoding levels, would reduce the number of decoding stages and

in most cases reduce the decoding complexity. Secondly, reducing the number of decod-

ing levels also decreases the amount of error propagation which occurs as a result of the

multi-stage decoding. To reduce the error propagation due to multi-stage decoding, the first

few levels should be chosen extremely powerful, so that the amount of error propagation

is decreased. This however leads to higher decoding complexity for the first few levels; (2)

the number of dimensions, i.e., m x 2, should be kept as low as possible. As m increases

the number of nearest neighbors associated with the code also start increasing, which limits

the performance of the code. On the other hand, increasing m usually helps in decreasing

the normalized decoding complexity associated with the code; (3) theorem 5 gives us the

minimum squared Euclidean distance of the overall multi-dimensional TCM code. For a

given minimum squared Euclidean distance of the TCM code, dB_free of the convolutional

codes chosen to form the multi-dimensional TCM code should be chosen to be as small as
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possible. LowerdB.free would imply lower decoding complexity associated with the convo-

lutional code decoding. The above also holds for theorem 6; (4) the branch computation

complexity Be, at the i-th stage of decoding depends upon Ai. If Ai is chosen to have a

simple trellis structure, the corresponding branch computation complexity will be minimal.

If on the other hand, the trellis for Ai is suftlciently complex, techniques described in section
Q.

5 can be used to reduce the computation complexity. These techniques however, usually

lead to degraded performance; (5) construction of codes with good phase invariance, places

restrictions on codes as per theorem 7 and hence in most cases this would limit either the

performance and/or the achievable spectral emciency.

Most design considerations mentioned above lead to conflicting requirements. Hence,

there is a tradeofLr involved between performance, decoding comp]exity, spectral efficiency

and phase invariance.

Appendix A

Proof of theorem 7: The proof follows very closely the derivation of the phase invariance

conditions in [16]. For the code to be phase invariant by 180°/2 t-h, any code sequence in the

multi-dimensional code when rotated by 180°/2 t-h should produce another code sequence.

Let V be the transmitted code sequence. Let V r°t denote the code sequence V rotated

by 180°/2 t-h. Recall from section 3, that the basic building block of the proposed multi-

dimensional codes is A0, hence any valid code sequence in the multi-dimehsional code can

be considered to be a sequence of points from Ao. Consider the j-th time instant. Let

Vj = A(Vzj * V_j * ... • Vtd) be the transmitted sequence of m MPSK signals at the j-th

time instant, where, VIj E U0,_ for 1 < i < t. Also, let V_ "°t rot= _(Vz J .xrrot vrot_--2,J * "'" *--tJ )

be the sequence of m MPSK signals for V r°t at the j-th time instant, where, V_'j°t E Co,i

for 1 < i < t. Using results of [16], V_ "°t can be written in the following form :

V_ Ot --- _((Vlj q- V'lj) * (V2j Jc V2_) • ... , (Vt_ _ V'lj)), (A.1)

whereV_j=0forl_<i<h, Vhd=landV_j=Vhd.Vh+zj...Vl_zjforh<i<land
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0 denotesthe all-zerosequenceof length m. Form the sequence V', such that the j-th time

I # I I

Vj = A(Vaj •V2j, ..., Vtj)

instant of V' is:

(A.2)

Then, for the code to be phase invariant under rotations of 180°/2 t-h, V' should also be a

valid code sequence. Sequences of signal points from A_-t form a valid code sequence. Hence,

if V_ E Aq-1 then V is phase invariant under rotations of 1800/2 t-h, i.e., if 1 E Cq-l,h and

Vhj • Vh+lj"" Vi-aj E Cq-_,i for h < i < t, (A.3)

then V is phase invariant under phase rotations of 1800/2 t-h. Since the above should hold

for any transmitted sequence V, the theorem follows.
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Table 1 Optimum Branch Distance Rate 1/2 Codes

7'I G

5

2 2 )s

(4 3_ a

5 ( 6_

6 664 8

3447 532 ) s

8 575 s

9 6244 s

10 ( 3576
6322 ) s

dR-fr_ ' I NFl-fr_ a 1 dH-free u I NH-free*

3 1 3 1

4 1 5 1

5 2 5 1

6 2 7

7 4 8

8 6 9 2

8 1 10 4

9 1 11 2

10 3 12 2

t : Total encoder memory

t : Minimum free branch distance

A : Number of codewords with branch distance dB_free

u : Free Hamming distance

* : Number of codewords with Hamming distance dH_free

Note: The code generators have been listed in octal, where the octal representation of zyz

is 4. z + 2. y + z and z, y and z denote 3 binary bits.



Table 2 Optimum Branch Distance Rate 2/3 Codes

4

6/8

10

0 dn.fr_ I_I N A u.l 'B-fr_ [ dH-fr_ NH-fre_*

6 2 6 / 2
244 s

043 3

750

0 54 64 I 4

54 74 14 I s
76 26 46

5
64 0 36

75 57 0 6

66 64 55

4 3

5 3

7 6

14 6

30 6

2

t : Total encoder memory

: Minimum free branch distance

zx : Number of codewords with branch distance dB_free

u : Free Hamming distance

* : Number of codewords with Hamming distance dH_free

Note: The code generators have been listed in octal, where the octal representation of xyz

is 4.z + 2.y + z and x, y and z denote 3 binary bits.



Table 3 Optimum Branch Distance Rate 3/4 Codes

G

(0 6 6 21
6624

_6 2 2 2

(7 1 0 4 _

571 7 1
k0 5 6 7j a
74 2 34 0

44 7 74 74

54 0 4 74 j a

dB-free

2

3

NB-free A I dH-free

11 3

16 5

30 5

u NH_free.

__.3

8

1

t • Total encoder memory

: : Minimum free branch distance

: Number of codewords with branch distance dB_free

u : Free Hamming distance

* : Number of codewords with Hamming distance dH_free

Note: The code generators have been listed in octal, where the octal representation of z!tz

is 4.z + 2.V + z and z, V and z denote 3 binary bits.
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Part II

CODES FOR THE AWGN AND FADING CHANNELS

Abstract

In this paper, we will use the construction technique proposed in the previous part to con-

struct multi-dimensional TCM codes for both the AWGN and the fading channels. Analyti-

cal performance bounds and simulation results show that these codes perform very well and

achieve significant coding gains over uncoded reference modulation systems. In addition,

the proposed technique can be used to construct codes which have a performance/decoding

complexity advantage over the codes listed in literature.

1. Introduction

As was pointed out in part one of the paper, for modulation codes over the AWGN

channel, the main parameter of interest is the minimum squared Euclidean distance between

the transmitted code sequences and the number of nearest neighbors. DetAils on the above

parameters are available in [1,2] and as such, we will not reiterate these design considerations

here. The aforementioned design considerations will be the basis of construction of the

modulation codes for the AWGN channel in this paper.

If the channel is changed to a fading channel, most codes designed for the AWGN channel

no longer perform well, simply because the design parameters of a modulation code which

need to be optimized for the fading channel are different from that for the AWGN channel.

For the fading channel, we shall consider two scenarios. For the first case, we shall consider



the Rayleigh fading channel with slow fading, coherent detection, no channel state informa-

tion, independent symbol fading and minimum squared Euclidean distance as the decoding

metric. These assumptions have been considered, so as to enable us to compare our codes

with the ones listed in literature. Examples 3 and 4 construct codes for this scenario. For

the second case, we consider the MSAT channel with light shadowing. Example 5 constructs

a code for this case.

We would like to add, that the code construction technique is universal and is by no means

restricted by the aforementioned assumptions. For the fading channels in general, the error

performance of a code primarily depends on its minimum symbol distance, minimum product

distance and path multiplicity. It depends on the minimum squared Euclidean distance to

a lesser extent. Detailed discussion on these parameters of interest is given in [3, 4] and

as such, we will not reiterate these design considerations here. The dominant parameter

of interest is however the minimum symbol distance, and as such we will concentrate on

optimizing this parameter, when we construct codes for the fading channel.

This paper is organized as follows: In section 2 of this paper, we will derive general

analytical bounds on the performance of the modulation codes using the multi-stage decoding

techniques proposed in part one of this paper. In section 3, we will construct examples using

the proposed technique and compare them with the codes listed in literature.

2. Performance Analysis

In this section, we will derive a general expression for the bit-error-probability of the

multi-dimensional TCM codes decoded using the multi-stage technique proposed in section

5 of part 1.

For 1 < i < q, let Xi be a random variable, where the value of Xi denotes the number

of bit errors at the i-th decoding stage at a particular time instant t. Hence, 0 < Xi < ki.

Then, the bit-error-probability of the multi-dimensional TCM code, denoted Pb(e), is:

q q q

Pb(e)=E(_Xi)/_ki=(E(X_) + E(X2) + ... +E(Xq))/y_ki (2.1)
i=1 i=1 i=I
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where E (.) denotesthe expectation operator. For 2 < i < q, E (Xi) can be broken up

into two terms, the first one being the expected number of errors at the i-th stage assuming

that the previous i - 1 stages of decoding are correct and the second one being the expected

number of errors at the i-th stage due to erroneous decoding at either one of the previous

i - 1 stages of decoding, i.e., the error propagation term. Hence,

E (Xi) <_ (E (X,)lerro r propagation" PE,) + E (X,)]i_th stage error (2.2)

where E (Xi)lerror propagation denotes the error propagation term, pf., denotes the proba-

bility of error propagation from the previous stages and E (Xi)[i_th stage error denotes the

term due to erroneous decoding at the/-stage, assuming that the previous i - 1 stages of

decoding are correct. Hence, (2.1) can be rewritten in the following form:

q q q

Pb(e) <_ (_--_(E (X,)lerror propagation" PE,) + )--_(E (X')li-th stage error))/)--_ k, (2.3)
i=2 i=1 i=1

Except for a few specific cases, it is not possible to obtain a general expression for the

expected number of bits in error due to error propagation. The expected number of bits in

error due to error propagation, depend on both the choice of the inner codes as well as the

outer codes, as will be shown in the examples to be discussed later in this paper. As such,

we will therefore derive a general expression for the rest of the terms in (2.3).

Let V be the transmitted code sequence. Using (3.12, part 1) V can be written in the

form, A(_l(vl) + _2(v2) + -" + _bq(Vq)), where vl for 1 < i < q denotes a code sequence in

the convolutional code at the i-th stage, Ci.

For 1 < i < (q- 1), let us consider the term E (X;)li-th stage error" Recall from section

5 ( part 1 ), that at the i-th stage of decoding, we form the trellis A(C_), where a code

sequence in A(Ci) is of the form, A(_l(Cq) + ff_(¢'2) + "'" + ffi-l(Czi-l) + ffi(ul) + u_,),

where ui is a code sequence in the convolutional code at the i-th level, C_; wi is sequence

of points from fl_ and for 1 _< j _< (i - 1), ÷j denotes the estimate of vj. Since we are

considering the term E (X_)li-th stage error , ÷_ = vj for 1 _< j _< (i - 1). Also, since C_

is a linear code, the code sequence Ul can be written in the form, Ul = Vl + e, where e
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is codesequencein C_. As such, any code sequence in _(6'_) can be rewritten in the form,

- _(¢l(vl) + ¢2(v2) + "" + _i-l(vt-1) + _(v! + e) + w_). Say, that the decoder at the

i-th stage of decoding decodes the code sequence associated with the convolutional code to

be vi + e, and let the probability that the event occurs be Pc. The exact expressions for pe

can be found in [1, 2] for the AWGN channel and in [3] for the Rayleigh fading channel. Let

le denote the number of non-zero information bits associated with the sequence e. Then

the expected number of bits in error ( per decoding time instant ) due to the sequence e is

/e'Pe. Since e is any arbitrary code sequence in the convolutional code C_, the total number

of bits in error at the i-th stage, E (Xi)]i.th stage error is obtained by considering all the

possible code sequences and adding up all the Ie "Pe terms, i.e.,

E (Xi)[i_th stage error -< _ Ie'pe (2.4)
eECi

where Ci denotes the set of all the code sequences in the convolutional code, Ci.

Special Case - AWGN Channel: For the results derived above, let us consider the special

case when the channel is AWGN. Let V be the transmitted code sequence and let 'V be the

decoded code sequence. Both these sequences have the form as given earlier. Let D_ denote

the minimum squared Euclidean distance between V and V. Since vj for 1 < j < (i - 1)

is arbitrary, Dg has been taken to be the minimum over all possible transmitted code

sequences for a fixed e. This is the worst case scenario, and as such the minimum squared

Euclidean distance D2e gives us an upper bound on the performance of the code. Also,

let Ne be the number of codewords at a squared Euclidean distance of Dg from V. The

probability that V is decoded incorrectly depends upon both D_ as well as Ne [2]. The code

sequences v I and e can be written in the general form, vl = (vi,l,vi,2, ... ,vi.p,...) and

e = (el,e2, ... ,ep,---) where vij, and ep for 1 < p _< oo denotes the output sequence ( ni

bits ) of vi and e respectively at the p-th time instant. The minimum squared Euclidean

distance between _r and V at the p-th time instant depends only on ep and let this squared

Euclidean distance be denoted by D 2 Also, let N_, be the corresponding number of nearestep"

neighbors [2]. Then, D_ = _o=_ 9 2 and Ne = l-I_=_ N,,. D_ and Ne can be evaluated usingcp



the technique proposed in [2].

E (Xq)lq.th stage error depends on whether the q-th level of encoding uses a convo-

lutional code or is left uncoded. If a convolutional code is used at the q-th level, then

the expressions for E (Xq)[q_th stage error are the same as those derived above. However,

if the q-th level is left uncoded then E (Xq)lq_th stage error can be upper bounded as:

E (Xq)lq.th stage error -< BEI_ • kq, where BEI_ denotes the decoding error probability (

i.e., the block error probability ) for the last stage of decoding, i.e., the block of kq bits at

the q-th stage of decoding would be declared to be in error if at least one of the bits is in

error. The block error probability would depend on the decoding algorithm used at the q-th

stage, i.e., single-stage or multi-stage. The block error probability can be calculated using

results of [5].

A very interesting and special case of the results derived above occurs when q = 2 and

the second level outer code is left uncoded, as shown in figure 2 ( part 1 ). For this special

case, we can get a closed form expression for Pb(e). Using (2.1) and (2.2), Pb(e) can be

written in the form,

2

Pb(e) < ((_-_E (X,)[ i stage error) + (E (X2)lerror propagation)" pea)/(kl + k2), (2.,5)
i=1

E (X1)[1-st stage error can be derived using (2.4). E (X2)12-nd stage error can be upper

bounded as, E (X2)12.nd stage error -< BERs. ks. Let V be the transmitted code sequence.
t

Then, using (3.12, part 1 ), V can be written in the form, A(ffl(vx) +cos) where vl is a code

sequence in the convolutional code used at the first level, 6'1 and w2 is a sequence of points

from _2s. Let the decoded code sequence associated with the convolutional code be vl + e,

where e is a code sequence in 6'1. pe gives us the corresponding probability of this event.

Let w_(e) denote the broth weight of e. Hence, the error sequence e will cause at most

wb(e) blocks of ks bits at the second stage to be in error, i.e., the number of bits in error at

the second stage of decoding, due to the error sequence e is < ks • wb(e). Using arguments

similar to those used to derive (2.4), (E (Xs)lerror propagation "Pea) can be upper bounded

as, (E (X2)lerror propagation" Pea) -< _eeCa ks" w_(e)'pe.
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3. Examples

Examples 1 and 2 construct codes for the AWGN channel, examples 3 and 4 construct

codes for the Rayleigh fading channel and example 5 constructs a code for the light shadowed

mobile satellite communication (MSAT) channel. In the following, we will use (n, k, d) to

denote a linear block code of length n, dimension k and minimum distance d. _.

Example 1: Consider the case of m = 8,q = 2 and choose S = 8PSK. Hence t = 3.

Figure 1 shows the two-dimensional 8PSK signal constellation of unit energy, in which each

signal point is uniquely labeled with 3 bits, abc, where a is the first labeling bit and c is

the last labeling bit. The labeling is done through signal partitioning process [1]. Choose

C0,1 = (8, 4, 4) Reed-Muller (RM) code, C0,2 = CI,2 = (8, 7,2) code, 6'0,3 = C_,3 = (8,8, 1)

code and C_,1 = (8, 1,8) code. The minimum squared Euclidean distance of A0 = _(f/0) is

2.344 and for A1 -- A(f/a) is 4.0 [5]. The encoder structure will be the same as that in figure

2 ( part 1 ). A rate_2/3 code will be used at the first level. Two choices will be considered

for the convolutional code at the first level. The first choice is the 4-state, dB.free = 2 code

from Table 2 ( part 1 ) and the second choice is the 16-state, dB_free = 3 code from Table

2 ( part 1 ). The phase invariance of the resulting code is the same for both the choices

and is 45 ° and can be derived by a straightforward application of theorem 7 ( part 1 ). The

spectral efl]ciency is also the same for both the choices and is equal to (16 + 2)/8 = 2.25

bits/symbol. The mapping _bl used is linear. Details of _bl have been omitted due to lack of

space. The following gives a detailed discussion for both the choices :

4 state: The minimum squared Euclidean distance of the code is (refer theorem 5, part 1):

min{4.0, 2.344.2} = 4.0. Using (3.12, part 1), any code sequence in the super trellis can be

written in the form, )_(q_l(vx) +wl) where vl is code sequence in the 2/3- rate convolutional

code used at the first level, and to1 is sequence of points from 121. As such, the super trellis

for this code is isomorphic to the trellis of the convolutional encoder used at the first level,

with each branch of the trellis consisting of 2TM parallel transitions corresponding to the 2TM

elements of f_l. 121 has a 4-state, 8-section trellis diagram [5]. Each branch of the super
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trellis can be expressedin the form, A(wo+ ill) where too E trio/ill]. Hence, ench branch

of the super trellis has a 4-state, 8-section trellis, which is isomorphic to the trellis of ill.

Standard Viterbi decoding can be used on every branch of super trellis using this 4-state,

8-section isomorphic trellis to find the most probable parallel transition. The trellis of

the overall multi-dimensional code can thus be viewed as a nested trellis diagram, i.e., a

trellis within a trellis.

A reduction in the decoding complexity can be achieved by using the multi-stage de-

coding algorithm proposed in section/5 ( part 1 ). The decoding now proceeds in two stages.

Let V be the transmitted code sequence. Using (3.12, part I) V can be written in the form,

A(¢l(vl) + ¢0_ r) where vl is a code sequence in the convolutional code C1 used at the first

level, and ¢0[ r is a sequence of points from f/1. At the first stage of decoding, we form the

_sup r3sup suptrellis '-'1 where any code sequence in "-'l can be written in the form (k,(ux) + ¢"1 ,

sup osup
where _1 denotes a sequence of points from ".1 and Ul is a code sequence in (71. The

osupdetails of how the trellis _sup is formed were mentioned in section 5 ( part 1 )...i is cho-

°sup = (8, 1 8) * (8, 8, 1) • (8, 8, 1) which has a very simple 2-state trellis structure.sen to be: .-1

On the other hand, f)l has a 4-state 8-section trellis diagram which is more complex than

osup
the trellis structure of ..1 . This helps in reducing the closest coset decoding complexity

associated with the first stage of decoding. Standard Viterbi decoding is performed on the

received seqt_ence using the trellis A(C sup) to obtain an estimate of vl, denoted _q. This

completes the first stage of decoding.

At the second stage of decoding, we construct the trellis C_ where a code sequence in C2

is of the form, ffl(vl) +tal where wl denotes a sequence of points from f/1. Consider the p-th

time instant. The structure of 6'2 at the p-th time instant is of the form, C'_. = _ (¢q_.) + f/l

where 91,p is the component of ¢q at the p-th time instant. This trellis 6'2,p is isomorphic

to the trellis ft_ and this trellis can be used to obtain an estimate of tr where w tr is the
t'_l,p_ l,p

term in w_ r corresponding to the p-th time instant.

The decoding complexity associated with the second stage of decoding can be further



reduced by using the 3-stage decoding technique for fit proposed by Sayegh [6] and Tanner

[7]. We will carry out the second stage of decoding using the 3-stage decoding technique

mentioned above ;

The multi-stage decoding algorithm does lead to a slight degradation in performance,

however, as will be shown in the performance curves, the loss is negligible as c.a_mpared to

the reduction in complexity. The following gives the number of computations associated

with both the optimal and the multi-stage decoding algorithm for the 4-state trellis. The

complexity calculation for the multi-stage decoding algorithm has been carried out assuming

the 3-stage decoding for the second stage, as mentioned above.

Computation Complexity - Optimal Decoding Algorithm: 7t = 2 and kl = 2.

The branch decoding complexity Bcl is: (1) since there are eight 8PSK points per branch,

the distance computation complexity per branch is 64; (2) survivor calculation for the parallel

branch transitions in Ql requires 32 compares; and (3) the Viterbi decoding for f_t requires 52

adds and 27 comparison to calculate the final survivor ( assuming the survivor for the parallel

transitions has been found ). Since there are 8 cosets, the total complexity is 416 adds and

216 compares, i.e., Bc_ = 416 adds + 248 compares + 64 distance computations. Hence,

total complexity is 54 adds + 32.5 compares + 8 distance computations per 2-dimensions.

Computation Complexity - Multi-stage Decoding Algorithm: 7t = 2 and kl = 2.

The branch decoding complexity is:

First stage of decoding: (1) there are eight 8PSK points per branch, hence the distance

computation complexity per branch is 64; (2) the sub-optimal distance estimate, [7] require

osup
48 compares; (3) Viterbi decoding of ..1 requires 14 adds and 1 compare. Since there are

8 cosets, the total complexity is 112 adds and 8 compares.

Second stage of decoding: (1) the multi-stage decoding technique requires 26 adds and

13 compares. Hence, total complexity is 19.25 adds + 10.125 compares + 8 distance com-

_Note, the first stage of the 3-stage decoding process for t21 can actually be combined with the first stage
of decoding of the TCM code, i.e. the stage which uses the trellis _-_mtP.
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putations per 2-dimensions.

Figure 2 _hows the simulation results of the bit-error-performance of both the optimal and

the multi-stage decoding algorithm. An upper bound on the bit-error-rate of the proposed

code is also shown in figure 2. Details of the bound have been omitted due to lack of space.

Also shown in the figure is the bit-error-performance of a hypothetical uncoded__PSK system

of the same spectral efficiency [9].

Figure 2 shows that the multi-stage and optimal decoding curves converge around E_/N,, =

8dB, and the performance of the optimal curve is only slightly better at low SNR. The pro-

posed code achieves a coding gain of 2.8 dB at the decoded bit-error-rate of 10 -6 over the

uncoded reference system of the same spectral efficiency [9]. In addition, the decoding com-

plexity of the optimal decoding algorithm is roughly about 3 times the decoding complexity

of the sub-optimal one.

Pietrobon et. al. do not have a comparable code over 8 x 2-dimensions, hence comparison

will be made with a 4 x 2-dimensional code over 8PSK with 7 = 2 and phase invariance

= 45 °. Spectral efficiency of this code is 2.25 bits/symbol, same as that of the proposed

code. The performance curve of this code, taken from [11], has also been shown in the

figure. The complexity of the Pietrobon code is 24 adds + 17 compares + 8 distance

distance computations per 2-dimensions. As can be seen from the figure, the proposed

code outperforms the Pietrobon code by roughly 0.4 dB at 4.10 -6 bit-e_ror-rate, and in

addition, the complexity of the proposed code with multi-stage decoding is less than that of

the Pietrobon code.

16 states: The minimum squared Euclidean distance of the code is (refer theorem 5, part

1) min{4.0, 2.344.3} = 4.0. The super-trellis in this case is very similar to the 4-state trellis

discussed above, with the only difference that the 4-state convolutional code at the first level,

has been replaced by the 16-state trellis. Both the optimal and the multi-stage decoding

techniques will be investigated for this case also. The complexity associated with the optimal

and the multi-stage decoding technique are:



Computation Complexity - Optimal Decoding Algorithm: 71 - 4 and ki = 2.

The branch decoding complexity Bet is the same as the 4-state case. Therefore, total

complexity is 60 adds + 37 compares + 8 distance computations per 2-dimensions.

Computation - Complexity - Multi-stage Decoding Algorithm: 71 = 4 and kl = 2.

The branch decoding complexity is the same as the 4-state case. Therefore, total com-

plexity is 25.25 adds + 14.625 compares + 8 distance computations per 2-dimensions.

Figure 3 shows the bit-error-performance of the both the optimal and the sub-optimal-

decoding algorithm. An upper bound on the bit-error-rate of the proposed code using the

multi-stage decoding algorithm is also shown in figure 3.

Figure 3 shows that the multi-stage and the optimal decoding curves exhibit the same

characteristics as the 4-state case. The two curves converge around Eb/NO = 6.54 dB, and

the performance of the optimal curve is only slightly better than the optimal curve at low

SNR. The proposed code achieves a coding gain of 3.2 dB at the decoded bit-error-rate

of 10 -8 over the uncoded reference system of the same spectral emciency [9]. In addition,

the decoding complexity of the optimal decoding algorithm is roughly about 2.5 times the

decoding complexity of the multi-stage one.

Pietrobon et. al. do not have a comparable code over 8 x 2-dimensions, hence comparison

will be made with a 4 x 2-dimensional code over 8PSK with 7 = 3 and phase invariance =

45*. Spectral ef[iciency of this code is 2.25 bits/symbol, same as that of the proposed code.

The performance curve of this code, taken from [8], has also been shown in the figure. The

complexity of this code is 48 adds + 32 compares + 8 distance distance computations per

2-dimensions. The performance of the proposed code is slightly better than the Pietrobon

code and in addition the complexity of the Pietrobon code is about 2 times higher than that

of the proposed code with multi-stage decoding.

The 16-state proposed code with the multi-stage decoding algorithm achieves better

performance than the 4-state proposed code with the multi-stage decoding algorithm at the
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cost of slightly increased decoding complexity. The improvement in performance is due to

the higher minimum squared Euclidean distance of the first decoding stage of the 16-state

code. This leads to better performance at the first decoding stage and as a result reduced

error propagation onto the second decoding stage.

Example 2: Consider the case ofm = 16, q = 3 and choose S = 8PSK. H_encet = 3.

Choose Co.1 = (16,4,8) code. This code is obtained from the first order Reed-Muller code

of length 16, by removing the all ones vector from the generator matrix of the (16, 5) code.

Choose C2,2 = (16,11,4) RM code, Co,2 = C0,a = C,,2 = C13 = C_3 = (16,15,2) code and

C1,1 = C2.1 = (16,0, oo) code, i.e., the code consisting of just the all zero codeword. The

minimum squared Euclidean distance for A0 = A(flo) is 4.0, for A1 = ._(fll) is 4.0 and for

A2 = A(fl2) is 8.0 [5]. A rate-3/4 code with 64-states ( second code in table 3 of part 1 )

will be used at the first level. Let us call this code C1. The same rate-3/4 code used at the

first level will be used at the second level. Let us call this code C2. The phase invariance of

the resulting code is 90 °. The spectral efficiency is equal to (3 -{-3 ÷ 26)/16 = 2 bits/symbol.

The mappings ¢1 and ¢2 used at the first and second encoding levels respectively have been

chosen to be linear. The minimum squared Euclidean distance of the code is at least (refer

theorem 5, part 1), min{8.0 , 3.4.0 , 3.4.0} = 8.0. Note, that the theorem gives the

minimum squared Euclidean distance associated with the first encoding stage to be at least

12.0. A quick verification of the partitions given above show that the minimum squared

Euclidean distance is actually 3 x 8 x 0.586 = 14.064. This is obtained by considering the

squared Euclidean distance due to the (16, 4) code of _ and multiplying it by the free

branch distance of C1.

Optimal decoding of the multi-dimensional code would require a trellis with 28. 26 = 212

states. Optimal decoding of the code using this 4096 state trellis would be extremely complex,

and as such we will focus on the multi-stage decoding technique proposed in section 5 ( part

1 ). The multi-stage decoding of the multi-dimenslonal code proceeds in 3 stages.

Let V be the transmitted code sequence. Using (3.12, part 1) V can be expressed in

11
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the form, _(¢1 (vx) + ¢_(v2) + w2) where vl is a code sequence in the 64-state convolutional

code C1, v2 is a code sequence in the 64-state convolutional code C2 and w2 is a sequence

of points from f12.

First stage of decoding: To simplify the trellis decoding complexity associated with the

Osupfirst stage of decoding, instead of forming the trellis Ct we form the trellis t _, where any

_sup supcode sequence in '-It can be written in the form ( refer section 5, part 1 ), St(ux) + w,

sup osupwhere w t is a sequence of points from ,.1 and ul is a code sequence in Ct. f_up is

osupchosen to be, osup.., = (16, 0, co) • (16, 16, 1) • (16, 16, 1)..., has a very simple 1-state trellis

structure. On the other hand, fli has a 4-state trellis diagram which is more complex than

osup This helps in reducing the closest coset decoding complexitythe trellis structure of "t '

associated with the first stage of decoding. Standard Viterbi decoding is performed on the

_supreceived sequence using the trellis ._1 to obtain an estimate of vx, denoted _q. This

completes the first stage of decoding.

Second stage of decoding: To simplify the trellis decoding complexity associated with the

_supsecond stage of decoding, instead of forming the trellis C2, we form "-'2 , where any code

_,sup sup
sequence in ,J2 can be written in the form ( refer section 5, part 1), _l(_'l)+$2(u2)+w2

where _up is a sequence of points from °sup,,2 and us is a code sequence in (72. fl_up is

osup°sup = (16, 0, co) • (16,11,4) • (16, 16, 1). ,,2 has a S-state trellis structurechosen to be, ,,_

[10]. On the other hand, f12 has a 16-state trellis diagram which is more complex than

the trellis structure of flsup. This helps in reducing the closest coset decoding complexity

associated with the second stage of decoding. Standard Viterbi decoding is performed on

rnsup
the received sequence using the trellis ,-'2 to obtain an estimate of v_, denoted ÷2. This

completes the second stage of decoding.

Third stage of decoding: The third stage of decoding is identical to the second stage of

decoding discussed in example 1. The three stage decoding technique proposed by Sayegh

[6] and Tanner [7] is used to split up the decoding of f12 into three stages. The first stage

decoding of f12 is trivial. Note, the second stage of the 3-stage decoding process for f12 can
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_t-4, I .

be combined with the second stage of decoding of the multi-dimensional TCM code.

Computation Complexity - Multi-stage Decoding Algorithm: 71 = 6, kl = 3,7_ =

6, k2 = 3. The branch decoding complexity is:

First stage of decoding: (1) the distance computation complexity per branch is 128;

(2) the sub-optimal distance estimates require 96 compares; (3) Viterbi decoding of ft_ up

requires 3 adds. Since there are 16 cosets, the total complexity is 48 adds.

Second stage of decoding: (1) closest coset decoding for ft_ up requires 184 adds + 87

compares, which is the trellis decoding complexity of the (.16, 11, 4) code [10]. Since there

are 16 cosets, the total complexity is 2944 adds and 1392 compares.

Third stage of decoding: (1) the multi-stage decoding technique for f22 requires 58 adds

and 29 compares. Note, only the decoding complexity of the (16, 15, 2) code has been taken

into account. The decoding complexity of the (16, 11, 4) code is included in the second stage

of decoding for reasons mentioned above. Hence, total complexity is 254.62 adds + 150.81

compares + 8 distance computations per 2-dimensions.

Figure 4 shows the simulation results of the bit-error-performance of multi-dimensional

TCM code. As can be seen from the figure, the code achieves a 4.2 dB coding gain over

uncoded QPSK at l0 -6 bit error rate. An upper bound on the bit-error-rate of the proposed

code using the multi-stage decoding algorithm is also shown in figure 4.

Pietrobon et. al. do not have a comparable code over 16 x2-dimensions, hence comparison

will be made with a 2 x 2-dimensional code over 8PSK with 7 = 7 and phase invariance =

90*. The spectral efficiency and phase invariance of both codes is the same. This Pietrobon

et. al. code is the best in performance among all the codes listed in [2] for rate 2 bits/symbol.

The performance curve of this code, taken from [8], has also been shown in the figure. The

complexity of the Pietrobon code is about 2 times higher than that of the proposed code,

however, the proposed code has performance comparable to the Pietrobon code at high SNR.

Example 3: Consider the case of m = 2, q = 3 and choose S = 8PSK. Hence g = 3. Choose
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C0,1 = C0,_ = C0,3 - CI,2 = CI.a = (2,2, 1) code, C2_ -" (2,1,2) code and C2,1 = C_,2 =

C1,1 = (2, 0, oo) code. The minimum symbol distance of A0 - )_(flo) is 1, for AI = A(fll) is 1

and for A2 = )_(f/2) is 2 ( refer section 3, part 1 ). The other distance parameters associated

with the three block modulation codes can be found by a straightforward application of the

distance theorem in [4]. A rate-l/2 code with 16-states ( fourth code in Tablel of part 1

) will be used at the first level. Let us call this code Cl. A rate-2/3 code with 16-states (

second code in Table 2 of part 1 ) will be used at the second level. Let us call this code

C2. The phase invariance of the resulting code is 180 °. The spectral.efficiency is equal to

(1 + 2 + 1)/2 = 2 bits/symbol. The mappings ¢t and ¢2 have been chosen to be linear.

The minimum symbol distance of the code is ( refer theorem 6, part 1 ), min{2 , 3.1,5.

1 } = 2. Since the minimum symbol distance of the overall modulation code is the minimum

symbol distance of A2, hence the minimum product distance, A2v of the modulation code is

(4.0) 2 -= 16.0 ( refer [4] ).

The decoding of this code is carried out in three stages and proceeds exactly as discussed

in section 5 ( part 1 ). The second and third stage of decoding can actually be combined

into one single stage of decoding. The computational complexity calculated below assumes

that the second and third decoding stages have been combined.

The minimum symbol distance of the first stage is chosen to be higher than the rest of

the decoding stages, so as to reduce the effect of error propagation.

Computation Complexity - Multi-stage Decoding Algorithm: 71 = 4, kl -- 1,7_ --

4, ]:2 = 2. The branch decoding complexity is:

First stage of decoding: (1) the distance computation complexity per branch is 16; (2)

the sub-optimal distance estimates require 12 compares; (3) Viterbi decoding of ftl requires

1 add. Since there are 4 cosets, the total complexity is 4 adds.

Second and third stage of decoding: (1) Viterbi decoding of f_2 is 2 adds + 1 compares.

Since there are 8 cosets, the total complexity is 16 adds and 8 compares. Therefore, total
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complexity is 58adds + 42 compares + 8 distance computations per 2-dimensions.

Figure 5 shows the simulation results of the bit-error-performance of the proposed code.

The performance of this code will be compared with the 16-state rate-2/3 code over 8PSK

constructed by Schlegel and Costello [12] for the Rayleigh fading channel. The spectral

efficiency for both codes is the same, however the Schlegel-Costello code has no phase invari-

ance. The performanc'e curve of the Schlegel-Costello code is also shown in figure 5. As can

be seen from the figure, the proposed code outperforms the Schlegel-Costello code by about

1.6 dB at 10 -4 bit error rate. In addition, the complexity of the Schlegel-Costello code is

64 adds + 48 compares + 8 distance computations per 2-dimensions which is slightly higher

than that of the proposed code.

Example 4: Consider the case of m = 8, q = 4 and choose S = 8PSK. Hence g = 3. Choose

Co,, = C2,2 = C3,2 = C3,3 = (8,4,4) RM code, C0,2 = C,,2 = (8,7,2) code, C0.+ = C,.3 =

C2,3 = (8,8, 1) code and C,,t = C2,1 = C3,1 = (8,0, c_) code. A rate-3/4 code with 8-states

( first code in Table 3 of part 1 ) will be used at the first level. Let us call this code C1. A

rate-2/3 code with 16-states ( second code in Table 2 of part 1 ) will be used at the second

level. Let us call this code C+. A rate-3/4 code with 64-states ( second code in Table 3 of

part 1 ) will be used at the third level. Let us call this code Cz. The phase invariance of the

resulting code is 180 °. The spectral efficiency is equal to (3 + 2 + 3 + 8)/8 = 2 bits/symbol.

The mappings ¢1, ¢2,¢3 and ¢4 are chosen to be linear.

The decoding of this code is carried out in four stages and proceeds in a manner similar

to that in example 2. The first stage of decoding is similar to the first stage of decoding in

°sup osup = (8,0,00) * (8,8,1) *example 2...1 used to simplify the decoding complexity is, .oa

(8,8,I).°sup"'l has a very simple 1-state trellis which is less complex than the 2-state trellis

of fh. The second and third stage of decoding is carried out exactly as described in section

5 ( part 1 ). The fourth stage of decoding is carried out using the multi-stage decoding

technique for f13 ( as was explained in example 1 ). The multi-stage decoding of f13 proceeds

in two stages. The first stage of decoding decodes the code C3,2 and the second stage decodes
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the C3,s code. The decoding of Cs,3 can be merged with the second stage of decoding of the

proposed code, and the decoding of C3,3 can be merged with the third stage decoding of the

proposed code. The complexity calculations given below assume that the fourth stage of

decoding of the proposed code has been merged with the previous stages.

Computation Complexity - Multl-stage Decoding Algorithm: "n = 3,k_ = 3,3'2 =

4, k2 = 2, "_a = 6, ka = 3. The branch decoding complexity is:

First stage of decoding: (1) the distance computation complexity per branch is 64; (2) the

osupsub-optimal distance estimates require 48 compares; (3) Viterbi decoding of _,1 requires

7 adds. Since there are 16 cosets, the totkl complexity is ll2 adds.

Second stage of decoding and the 1st stage of the fourth stage of decoding: (1)

closest coset decoding complexity is 36 adds and ll compares, which is the trellis decoding

complexity of the (8, 4, 4) code [10]. Since there are 8 cosets, the total complexity is 288

adds and 88 compares.

Third stage of decoding and the 2nd stage of the fourth stage of decoding: (1)

closest coset decoding complexity is 36 adds and 11 compares, which is the trellis decoding

complexity of the (8, 4, 4) code [10]. Since there are 1(3 cosets, the total complexity is

576 adds and 176 compares. Therefore, total complexity is, 202 adds + 108 compares + 8

distance computations per 2-dimensions.

6

Figure 6 shows the simulation results of the bit-error-performance of the proposed code.

The performance of this code will be compared with the 64-state rate-2/3 code over 8PSK

constructed by Schlegel and CosteLlo [12] for the Rayleigh fading channel. The spectral

efficiency for both codes is the same, however the Schlegel-Costello code has no phase invazi-

ance. The performance curve of the Schlegel-Costello code is also shown in figure 0. As can

be seen from the figure, the proposed code outperforms the Schlegel-Costello code by about

1.5 dB at 2.10 -4 bit error rate. In addition, the complexity of the Schlegel-Costello code is

2,56 adds + 192 compares + 8 distance computations per 2-dimensions which is higher than
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that of the proposedcode.

Example 5: A statistical model for the shadowed mobile satellite channel has been devised

by Loo [13-16] and this model has been used by other researchers [17-22] to study the error

performance of coded modulation schemes over the MSAT channel. In Loo's model, there

are three different kinds of shadowing - light, average and heavy. The corresponding Rician

factors are 6.16, 5.46 and -19.33 dB, respectively. Therefore, in the shadowed MSAT channel,

a coded modulation system suffers very severe distortion due to randomly changing phase

and multipath fading. Especially, if the Doppler frequency shift is large due to the motion of

vehicle, a coded modulation system faces the error floor phenomenon. 'Ore will assume that

the carrier frequency is 870 MHz and the symbol rate is 2400 symbols/sec. Due to randomly

changing phase, perfect phase synchronization is not feasible in the shadowed MSAT channel.

Therefore, differentially detected 8PSK modulation is used. We assume that the speed of

moving object is 92.88 miles/hr. The corresponding normalized fading bandwidth BT is 0.05

where B is the maximum Doppler frequency shift and T -1 is the symbol rate. To combat

burst errors, a block interleaver is used for computer simulation. The size of interleaver is

512 8DPSK symbols, and the number of rows of the block interleaver is 64 and the number

of columns is 8.

Consider the case of rn = 8, q = 3. Hence, t = 3. Choose C0,1 = C2,2 = (8, 4, 4) RM

code, C0,2 = C0,3 = C,,_ = C,,s = C2,3 = (8,7,2) code and C,,, = C2,, = (8,0,00) code. A

rate-3/4 code with 8-states ( first code in Table 3 of part 1 ) will be used at the first level.

Let us call this code C1. A rate-2/3 code with 16-states ( second code in Table 2 of part

1 ) will be used at the second level. Let us call this code C_. The phase invariance of the

resulting code is 90 °. The spectral efficiency is equal to (3 + 2 + 11)/8 = 2 bits/symbol. The

mappings ¢1 and ¢2 used at the first and second encoding levels are linear.

Decoding of the code proceeds exactly as in example 2, and as such, will not be repeated

here. The complexity calculations are also very similar to exaznple 2, and as such details will

be omitted. The total complexity is, 69.25 adds + 31.63 compares + 8 distance computations
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per 2-dimensions.

Figure 7 shows the simulation results of the bit-error-performance of the proposed code.

The performance of this code will be compared with the 16-state rate-2/3 code constructed

by Schlegel and Costello [12] ( this code is chosen, for lack of comparable complexity code

available in literature for the shadowed MSAT channel ). The spectral ef/icieacy for both

codes is the same. The performance curve of the Schlegel-Costello code is also shown in figure

7. As can be seen from the figure, the proposed code outperforms the Schlegel-Costello code

by about 9.65 dB at 10 -4 bit error rate. Also, the proposed code faces the error floor at

around 1.4 x 10 -5 bit error rate, whereas the Schlegel-Costello code faces an error floor

around 4.8 x 10 -s bit error rate. In addition, the complexity of the Schlegel-Costello code is

higher than that of the proposed code.

4. Conclusion

A simple and systematic technique of constructing multi-dimensional TCM codes using

block modulation codes and convolutional codes optimized for branch distance is proposed.

Bounds on the minimum squared Euclidean distance and minimum symbol distance of the

multi-dimensional TCM codes are derived, along with conditions on phase invariance. A

multi-stage decoding technique for the multi-dimensional TCM codes has also been proposed.

Examples constructed show that the technique can be used to construct good codes which

have a performance/decoding complexity advantage over the codes availabl6 in literature for

both the AWGN and fading channels.
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Figure 1 An 8PSK signal constellation and its signal labels
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